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SUMMARY
Although neocortical sensory areas are generally thought to faithfully represent external stimuli, cortical net-
works exhibit considerable functional plasticity, allowing them to modify their output to reflect ongoing
behavioral demands. We apply longitudinal 2-photon imaging of activity in the primary visual cortex (V1) of
mice learning a conditioned eyeblink task to investigate the dynamic representations of task-relevant infor-
mation. We find that, although all V1 neurons robustly and stably encode visual input, pyramidal cells and
parvalbumin-expressing interneurons exhibit experience-dependent emergence of accurate behavioral rep-
resentations during learning. The functional plasticity driving performance-predictive activity requires cell-
autonomous expression of NMDA-type glutamate receptors. Our findings demonstrate that accurate encod-
ing of behavioral output is not inherent to V1 but develops during learning to support visual task performance.
INTRODUCTION

Primary sensory areas of themammalian neocortex, including the

primary visual cortex (V1), have traditionally been thought to faith-

fully represent features of external stimuli. However, the cortical

representation of external stimuli is highly plastic over a range

of temporal scales. For example, learning associations between

sensory stimuli and behaviorally relevant outcomes drive alter-

ations in neuronal structure, activity patterns, and perceptual abil-

ity (Frenkel et al., 2006; Gavornik and Bear, 2014; Goltstein et al.,

2013; Jurjut et al., 2017; Li et al., 2019; Makino and Komiyama,

2015; Poort et al., 2015; Schoups et al., 2001; Wang et al.,

2016; Yan et al., 2014; Yang and Maunsell, 2004). Furthermore,

repeated pairing of a visual stimuluswith a reward results inmodi-

fication of feature selectivity (e.g., orientation preference) by sin-

gle neurons in the primary visual cortex (V1) (Frenkel et al.,

2006; Gavornik and Bear, 2014; Goltstein et al., 2013; Jurjut

et al., 2017; Poort et al., 2015; Schoups et al., 2001; Yan et al.,

2014; Yang andMaunsell, 2004). Neuronal activity corresponding

to behavioral choice or trial outcome has also been described in

the sensory cortex (Blake et al., 2006; Kwon et al., 2016; Poort

et al., 2015; Ress and Heeger, 2003; Rutkowski and Weinberger,

2005; Shuler and Bear, 2006; Tang and Higley, 2020; Wiest et al.,

2010). However, it is unclear whether the representation of behav-

ioral output is inherent to V1, like feature selectivity, or instead,

emerges dynamically during learning. Moreover, the cellular

mechanisms underlying the functional reorganization of network

activity are poorly understood.

Several groups have shown that classical eyeblink condition-

ing provides an excellent model for investigating the neural cor-
This is an open access article under the CC BY-N
relates of sensorimotor learning (Albergaria et al., 2018; Freeman

and Steinmetz, 2011; Heiney et al., 2014; Siegel et al., 2015). We

recently showed that mice rapidly learn to form associations be-

tween visual stimuli and aversive corneal air-puffs, resulting in

expression of a conditioned blink response (Tang and Higley,

2020). Neuronal activity within V1 is required for task perfor-

mance and significantly predicts behavioral outcome in expert

animals (Tang and Higley, 2020). Here, we combined chronic

in vivo two-photon imaging and genetic manipulation of targeted

excitatory and inhibitory neuronal populations within mouse V1

to investigate the dynamics and cellular mechanisms linked to

plasticity of sensory and behavioral representations during con-

ditioning. Our results demonstrate that V1 neurons robustly and

stably encode visual input throughout learning, regardless of the

gradual reduction in the magnitude of stimulus-evoked activity.

In contrast, representation of behavioral outcome emerges

over the course of learning for both single neurons and neuronal

ensembles. Notably, behavioral encoding was observed for both

pyramidal neurons (PNs) and parvalbumin-expressing interneu-

rons (PV-INs) but not for somatostatin (SOM)-expressing inter-

neurons (INs) or vasoactive intestinal peptide (VIP)-expressing

INs. Finally, plasticity of behavioral representation requires cell-

autonomous expression of NMDA-type glutamate receptors

(NMDARs), suggesting a critical role for synaptic plasticity in

the emergence of task-relevant activity in V1.

RESULTS

To study the relationship between V1 activity and the acquisition

of sensory-guided behavior, we developed a visually cued
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Figure 1. Longitudinal Imaging of Activity

during Visually Cued Eyeblink Conditioning

(A) Schematic illustration of the behavioral setup

(left) and trial structure (right).

(B) Performance over 14-day-long training for the

layer 2/3 PN imaging cohort (n = 6 mice, black).

Dots with error bars represent averages ± SEM.

Spontaneous blink rate per 450ms period is shown

(blue). Training phases were divided into tertiles

(early, mid, and late) based on average group

performance.

(C) Example of in vivo two-photon imaging of layer

2/3 neurons expressing GCaMP6s, collected on

two different training days from the same mouse.

Scale bar indicates 50 mm. Average visually

evoked response for one example layer 2/3 neuron

on days 1 and 14 is shown to the right. Timing of

the visual stimulus (blue bar) and air puff (purple

bar) are shown below each trace. Intervals for

measuring baseline activity (light-blue window)

and visual response magnitude (pink window) are

shown superimposed. Lines and shading indicate

averages ± SEM across all trials for the given day.

(D) Population values for the visual response

magnitude (given as %DF/s) for each day of

training. Bars and lines indicate averages ± SEM.

Analysis windows (3 days) for early (red), mid (or-

ange), and late (blue) training phases are indicated.

(E) Average population values for response

magnitude within each training phase, corre-

sponding to colors in (D). Lines represent averages

± SEM (n = 6 mice). *p < 0.05, paired t test for early

versus late.

(F) Distribution of stimulus prediction accuracy

values using a linear decoder for responses of in-

dividual layer 2/3 neurons across each training

phase. Chance level (0.5) is indicated (gray dashed

line). Black circles indicate averages ± SEM for the

population of individual neurons.

(G) Relationship between stimulus prediction ac-

curacy and response magnitude for individual

neurons across each training phase. Red dashed

line indicates Spearman’s rank correlation.

(H) Average stimulus prediction accuracy values using a linear decoder for the ensemble activity. Colors as in (D). Lines represent averages ± SEM (n = 6 mice)

and are also indicated by colored circles in (F). *p < 0.05, t test relative to chance. ns indicates p > 0.05, paired t test for early versus late.
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eyeblink conditioning task. Briefly, head-fixed mice placed on a

running wheel learned to associate a contrast-modulated drifting

grating (conditioned stimulus [CS]) with an aversive ipsilateral

corneal air puff (unconditioned stimulus [US]), which elicited an

unconditioned blink response (UR). Repeated stimulus pairings

resulted in a conditioned blink response (CR), which occurred af-

ter the onset of the visual stimulus but before the air puff (Fig-

ure 1A; see Method Details). Learning occurred over a few

days without change in CR magnitude or latency (Figures 1B

and S1), and we previously showed that both acquisition and

performance required an intact V1 (Tang and Higley, 2020). For

subsequent analyses, learning was divided into three phases

(early, mid, and late) based on average group performance (Fig-

ure 1B). Performance was only modestly dependent on behav-

ioral state during the early learning phase, measured via either

locomotion speed or pupil diameter, and the distribution of

behavioral state parameters did not change across learning (Fig-

ure S1; Table S1; see Method Details).
2 Cell Reports 32, 107970, July 28, 2020
We used two-photon imaging of the genetically encoded cal-

cium indicator GCaMP6s (Chen et al., 2013b) to monitor the ac-

tivity of putative pyramidal neurons (PNs) in V1 (see Method De-

tails), tracking the same cells longitudinally across the 2-week

training period (Figures 1C and S2). As we showed previously

(Tang and Higley, 2020), spontaneous blinks can evoke re-

sponses in V1 neurons (Figure S2). To exclude any potential

contamination of the measurements of stimulus-evoked re-

sponses, we restricted our analyses to a 300-ms period after

stimulus onset, using the calculated linear slope (%DF/s) as

the measure of response magnitude (Figure S2). Consistent

with recent work (Makino and Komiyama, 2015), acquisition of

visual behavior was associated with a reduction in the evoked

response over the course of training (Figures 1C and 1D). This

result was significant when directly comparing responses be-

tween early and late learning phases (21.1 ± 6.8% versus 10.8

± 3.0%, n = 6 mice, paired t test, p = 0.028; Figure 1E; see

Method Details). Control experiments revealed that visual



Figure 2. Cortical Representation of Behav-

ioral Outcome Emerges during Training

(A) Average visually evoked response for one

example layer 2/3 neuron across training phases.

Traces are separated by correct (black) and incorrect

(dark red) trials. Timing of visual stimulus (blue bar)

and air puff (purple bar), and analysis windows

(baseline, light blue; visual response, pink) are

shown. Lines and shading indicate averages ± SEM

across all trials for the given phase.

(B) Average population values for the visual response

magnitude, separated by correct and incorrect trials,

within each training phase. Lines represent averages

± SEM (n = 6 mice). *p < 0.05; ns indicates p > 0.05,

paired t test for correct versus incorrect.

(C) Distribution of blink prediction accuracy values

using a linear decoder for responses of individual

layer 2/3 neurons across each training phase.

Chance level (0.5) is indicated (gray dashed line).

Black circles indicate averages ± SEM for the pop-

ulation of individual neurons.

(D) Relationship between blink prediction accuracy

and response magnitude for individual neurons

across each training phase. Red dashed line in-

dicates Spearman’s rank correlation.

(E) Average blink prediction accuracy values using a

linear decoder for the ensemble activity. Colors

denote training phases as above. Lines represent

averages ± SEM (n = 6 mice) and are also indicated

by colored circles in (C). *p < 0.05, t test relative to

chance for each phase. #p < 0.05, paired t test for

early versus late.
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experience alone, in the absence of training, is sufficient to

induce a reduction in sensory-evoked cortical activity (Figure S3;

Table S1). Visual responses were enhanced by arousal (Vinck

et al., 2015), although that modulation did not change across

learning (Figure S3; Table S1). Interestingly, thalamic axons

imaged in layer 4 exhibited a non-significant increase in

response magnitude (Figure S3; Table S1), arguing that the

experience-dependent decrease in V1 responses arises through

modification of intracortical circuits.

To examine whether our observed changes in response

magnitude were associated with disruption of stimulus encod-

ing, we investigated the ability of a linear classifier to predict

the presence of a visual stimulus versus baseline spontaneous

activity for individual trials (see Method Details). Using a support

vector machine (SVM) model, we found that individual PNs ex-

hibited a range of stimulus prediction accuracy levels that did

not differ across learning (early versus late phase, 0.59 ± 0.02

versus 0.56 ± 0.01, n = 6 mice, paired t test, p = 0.999; Kolmo-

gorov-Smirnoff [KS] test, p = 0.956; Figure 1F). Interestingly,

the stimulus-predictive accuracy of single neurons was corre-

lated with response magnitude within a single learning phase

(early: Spearman’s r2 = 0.52, p < 0.001; mid: Spearman’s r2 =

0.50, p < 0.001; late: Spearman’s r2 = 0.46, p < 0.001; Figure 1G).

Previous work has shown that neuronal populations can perform

much better than individual cells in predicting sensory stimuli

(Moreno-Bote et al., 2014). Therefore, we trained a similar SVM

using an ensemble vector comprising all neurons, confirming

that, as a group, layer 2/3 PNs performed better than chance

during all learning phases (early: 0.90 ± 0.03, n = 6 mice, t test,
p < 0.001; mid: 0.84 ± 0.04, n = 6 mice, t test, p < 0.001; late:

0.88 ± 0.03, n = 6 mice, t test, p < 0.001; Figure 1H). In addition,

population accuracy was unchanged over learning, despite the

reduced response magnitude (early versus late, n = 6 mice,

paired t test, p = 0.772; Figure 1H). Overall, these findings

demonstrate that functional plasticity of evoked V1 response

magnitude can occur without significant alteration in the ability

to robustly encode sensory input.

Next, we examined whether visually evoked activity in V1 was

predictive of an animal’s behavioral performance. During early

and mid-learning, there was no difference between the average

PN response magnitude for correct versus incorrect trials (early:

22.0 ± 6.5% versus 20.8 ± 6.9%, n = 6 mice, paired t test, p =

0.188; mid: 20.2 ± 7.1% versus 16.2 ± 7.7%, n = 6 mice, paired

t test, p = 0.235). However, in well-trained animals (late phase),

responses on correct trials were larger than those on incorrect

(11.7 ± 3.1% versus 8.6 ± 3.2%, n = 6 mice, paired t test, p =

0.003, Figures 2A and 2B). We again used a linear classifier to

investigate neuronal predictive accuracy for trial outcome. Inter-

estingly, the average accuracy of individual neurons increased

over the 2-week training period (early versus late phase, 0.51 ±

0.004 versus 0.52 ± 0.003, n = 6 mice, paired t test, p = 0.039;

KS test, p < 0.001; Figure 2C) and was not correlated with

response magnitude (early: Spearman’s r2 < 0.001, p = 0.228;

mid: Spearman’s r2 = 0.007, p = 0.082; late: Spearman’s r2 =

0.020, p = 0.086; Figure 2D). Consistent with the average

response data, layer 2/3 PN ensembles were also not better

than chance at predicting behavior during the early phase of

training (0.52 ± 0.01, n = 6 mice, t test, p = 0.053) but did perform
Cell Reports 32, 107970, July 28, 2020 3



Figure 3. Sensory and Behavioral Representation by GABAergic

Interneurons

(A) Example of in vivo 2-photon imaging of the GCaMP6f in layer 2/3 PV-

INs (left), SOM-INs (middle), and VIP-INs (right). Scale bar indicates

50 mm.

(B) Average visually evoked responses for example layer 2/3 PV-INs

(left), SOM-INs (middle), and VIP-INs (right). Traces are shown for

days 1 and 14. Timing of visual stimulus (blue bar) and air puff (purple

bar) and the analysis windows (baseline, light blue; visual response,

pink) are shown. Lines and shading indicate averages ± SEM across all

trials.

(C) Average population values for the visual response magnitude, sepa-

rated by correct (black) and incorrect (dark red) trials, within each training

phase. Data are for PV-INs (left), SOM-INs (middle), and VIP-INs (right).

Lines represent averages ± SEM (PV-INs, n = 7 mice; SOM-INs, n = 7

mice; VIP-INs, n = 6 mice). *p < 0.05, paired t test for correct versus

incorrect.

(D) Distribution of blink prediction accuracy values using a linear decoder for

responses of individual layer 2/3 PV-INs across each training phase. Chance

level (0.5) is indicated (gray dashed line). Black circles indicate averages ±

SEM for the population of individual neurons.
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better than chance for later phases (mid: 0.57 ± 0.01, n = 7 mice,

t test, p < 0.001; late: 0.57 ± 0.01, n = 6 mice, t test, p < 0.001;

Figure 2E), and the blink prediction accuracy was better for the

late versus early phase (paired t test, p = 0.017). Furthermore,

as with our behavioral data, performance prediction accuracy

was not correlated with the sensitivity of individual neurons to

changes in behavioral state (Figure S3; Table S1).

We next estimated the number of single cells necessary to

reach population-level accuracy by training our classifier on

randomly selected neuronal groups of varying size, finding that

~30 cells were sufficient to match the accuracy of the overall

population (Figure S4). Simulating a population of neurons

whose accuracy values matched the distribution of the layer 2/

3 PNs confirmed that ensembles of ~30 cells exhibit markedly

better predictive performance than the average of single cells

and a corresponding improvement with the learning phase (early

versus late, 0.47 ± 0.01 versus 0.95 ± 0.02, n = 80 synthetic neu-

rons, t test, p < 0.001; Figure S4; Table S1). Thus, our results

demonstrate the remarkable finding that the accurate represen-

tation of behavior in V1 is highly plastic, emerging during learning

despite the unchanged accuracy of the stimulus prediction.

Moreover, improved ensemble accuracy follows from the

increasing accuracy of individual neurons through pooling of a

relatively small number of cells.

To determine whether our findings generalized across all

neuronal populations in V1, we again used two-photon imaging

to monitor the activity of GABAergic INs expressing either PV,

SOM, or VIP in separate cohorts of mice undergoing behavioral

training (Figures 3A and S5). All three IN populations exhibited a

reduction in stimulus-evoked response magnitude over the

course of training, similar to the results from PNs (Figures 3B

and S5; Table S1). As above, this change did not alter the ability

of PV-, SOM-, or VIP-IN ensembles to accurately and stably pre-

dict the visual stimulus throughout training (Figure S5; Table S1).

However, only the PV-INs demonstrated a difference between

average response magnitude on correct versus incorrect trials

(early: 20.1 ± 4.5% versus 12.6 ± 2.4%, n = 7 mice, paired t

test, p = 0.031; mid: 11.1 ± 6.6% versus 4.2 ± 3.3%, n = 7

mice, paired t test, p = 0.047; late: 1.2 ± 2.1% versus �3.9 ±

2.1%, n = 7 mice, paired t test, p = 0.021; Figure 3C). Moreover,

the linear classifier revealed that prediction accuracy of individ-

ual PV-INs for trial outcome increased with training (early versus

late, 0.51 ± 0.01 versus 0.53 ± 0.004, n = 7mice, paired t test, p =

0.013; KS test, p = 0.004; Figure 3D). Similarly, the behavioral

prediction accuracy of PV-IN ensembles did not differ from

chance during early training (0.52 ± 0.02, n = 7 mice, t test, p =

0.172) but did perform above chance for mid (0.56 ± 0.02, n =

7 mice, t test, p = 0.023) and late (0.58 ± 0.02, n = 7 mice, t

test, p = 0.003; Figure 3E) phases, and there was an increase

in accuracy between early and late training (paired t test, p =

0.021). Similar analyses for SOM- and VIP-INs revealed that

behavioral prediction accuracy did not differ from chance at
(E) Average blink prediction accuracy values using a linear decoder for

the ensemble activity of PV-INs. Lines represent averages ± SEM (n = 7

mice) and are also indicated by colored circles in (D). *p < 0.05, t

test relative to chance for each phase. #p < 0.05, paired t test for early

versus late.



Figure 4. NMDARs Are Required for Func-

tional Plasticity of Behavioral Representa-

tion

(A) Schematic illustration showing viral strategy for

sparse deletion of the GluN1 subunit and expres-

sion of GCaMP6s.

(B) Example of in vivo two-photon image of

GCaMP6s (green, left), tdTomato (red, middle), and

merge (right) in layer 2/3 neurons. tdTomato-ex-

pressing cells are putative GluN1 null. Scale bar

indicates 50 mm.

(C) Average population values for the visual

response magnitude of GluN1 null cells, sepa-

rated by correct (black) and incorrect (dark

red) trials, within each training phase. Lines

represent averages ± SEM (n = 6 mice). ns in-

dicates p > 0.05, paired t test for correct versus

incorrect.

(D) Distribution of blink prediction accuracy values

using a linear decoder for responses of individual

GluN1-null cells across each training phase.

Chance level (0.5) is indicated (gray dashed line).

Black circles indicate averages ± SEM for the

population of individual neurons.

(E) Average blink prediction accuracy values using a linear decoder for the ensemble activity of GluN1-null and GluN1-WT cells. Lines represent averages ± SEM

(n = 6 mice) and are also indicated by colored circles in (D). *p < 0.05, t test relative to chance for each phase; #p < 0.05 and ns indicates p > 0.05, respectively for

early versus late; $p < 0.05, t test for late phase null versus WT.
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any phase of training (Figure S5; Table S1). Overall, these data

reveal that the emergence of behavioral representations during

visual conditioning is specific to PNs and PV-INs.

The functional plasticity of the V1 activity associated with

training might arise from modification of synaptic connectivity

within local networks. NMDARs are strongly linked to synaptic

plasticity of both excitatory and inhibitory synapses and may

be necessary for experience-dependent changes in visually

evoked responses (Chiu et al., 2018, 2019; Cooke and Bear,

2010; Frenkel et al., 2006; Malenka and Bear, 2004). To deter-

mine whether our results are dependent on NMDAR signaling,

we used an adeno-associated virus (AAV) vector to delete the

obligatory GluN1 subunit from a sparse number of V1 neurons

(Chiu et al., 2018). Here, expression of Cre recombinase-tdTo-

mato in GluN1f/f mice allowed us to identify the small number

of putative GluN1 null cells (20.8 ± 3.0) in each field of view

during imaging (Figures 4A and 4B). Sparse loss of NMDARs

did not disrupt visual learning, and there was no difference

in evoked-response magnitude between GluN1 null (tdTo-

mato-positive) and neighboring wild-type (WT; tdTomato-

negative) neurons (Table S1). Training the linear classifier on

GluN1-null ensemble data showed that those cells accurately

predicted the visual stimulus for all phases (Figure S6; Table

S1). However, GluN1-null cells failed to develop a difference

in average response magnitude for correct versus incorrect

trials (early: 9.3 ± 5.1% versus 10.2 ± 5.4%, n = 6 mice, paired

t test, p = 0.703; mid: 9.0 ± 4.2% versus 9.9 ± 4.2%, n = 6

mice, paired t test, p = 0.686; late: 6.6 ± 3.3% versus 4.5 ±

3.0%, n = 6 mice, paired t test, p = 0.073; Figure 4C). Consis-

tent with that finding, the average blink prediction accuracy of

single GluN1-null neurons did not improve with learning (early

versus late, 0.51 ± 0.01 versus 0.52 ± 0.01, n = 6 mice, paired

t test, p = 0.386; KS test, p = 0.155; Figure 4D). Additionally,
the GluN1-null ensemble could not predict behavior above

chance for any phase (early: 0.52 ± 0.04, n = 6 mice, t test,

p = 0.294; mid: 0.50 ± 0.01, n = 6 mice, t test, p = 0.362;

late: 0.50 ± 0.02, n = 6 mice, t test, p = 0.557), and accuracy

did not improve over training (early versus late, paired t test,

p = 0.694; Figure 4E). Importantly, we trained our classifier

on a similarly sized (n = 20) population of randomly selected

GluN1-WT neurons from the same fields of view. As with cells

from WT mice, GluN1-WT neurons accurately predicted the vi-

sual stimulus for each phase, and that accuracy did not

change across learning or differ between GluN1-null and

-WT cells (Figure S6; Table S1). In addition, the GluN1-WT

ensemble could not predict behavior during the early phase

(0.52 ± 0.01, n = 6 mice, t test, p = 0.055) but performed better

than chance for mid (0.55 ± 0.02, n = 7 mice, t test, p = 0.029)

and late (0.56 ± 0.01, n = 6 mice, t test, p = 0.001) phases and

demonstrated improvement with training (early versus late,

paired t test, p = 0.026; Figure 4E). Moreover, in well-trained

animals (late phase) the GluN1-WT cells predicted perfor-

mance significantly better than the GluN1-null cells (t test,

p = 0.026; Figure 4E).

DISCUSSION

Our results indicate that sensory-evoked neuronal activity in

V1 is highly plastic during visual learning. Consistent with

earlier work, response magnitude for both excitatory and

inhibitory cells decreased over several days (Makino and Ko-

miyama, 2015), although this decrease occurred without loss

of predictive accuracy for the sensory stimulus. In addition,

our data indicate that this reduced responsiveness also oc-

curs in the absence of aversive stimuli, suggesting passive

habituation is the default outcome, in contrast to earlier
Cell Reports 32, 107970, July 28, 2020 5
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findings (Gavornik and Bear, 2014). Notably, those changes in

activity and prediction accuracy were not correlated with

changes in behavioral state or arousal levels across learning.

Previous studies have also shown that experience-dependent

plasticity can alter the feature selectivity of V1 neurons (Gav-

ornik and Bear, 2014; Goltstein et al., 2013; Jurjut et al., 2017;

Makino and Komiyama, 2015; Poort et al., 2015; Schoups

et al., 2001), whereas our data highlight the emergence of

behavioral outcome representations early in the visual

pathway. This finding builds on work from our laboratory

and others demonstrating the ability of sensory areas to accu-

rately encode behavioral choice (Chen et al., 2013a; Kwon

et al., 2016; Poort et al., 2015; Tang and Higley, 2020) and in-

dicates that this information is not inherent to V1 but develops

during learning.

We observed an emergence of behavioral predictions in

both PNs and PV-INs, but not in SOM- or VIP-INs, likely re-

flecting cell-type specificity of underlying plasticity mecha-

nisms. This finding contrasts somewhat with earlier work

demonstrating plasticity of stimulus tuning for PV- and

SOM-INs during learning (Khan et al., 2018). PV-IN activity is

closely linked to that of local excitatory networks and has a

key role in regulating the timing and gain of sensory-evoked

responses (Atallah et al., 2012; Cardin et al., 2009; Lee

et al., 2012), making the functional coupling of these popula-

tions unsurprising. The presence of predictive accuracy for

PV-INs even in early training likely reflects the difficulty in

analyzing the earliest stages of learning given the small num-

ber of trials but suggests these cells rapidly gain this ability

and may drive subsequent encoding by PNs. SOM-INs are

linked to the control of dendritic calcium signaling and expe-

rience-dependent circuit plasticity (Chiu et al., 2013, 2018; Ci-

chon and Gan, 2015; Hayama et al., 2013; Makino and Ko-

miyama, 2015), suggesting that these cells may still

contribute to the functional reorganization of V1 activity

despite their lack of predictive accuracy. Notably, our previ-

ous work also demonstrated significant heterogeneity across

PN subpopulations for both sensory and behavioral represen-

tations (Lur et al., 2016; Tang and Higley, 2020), further sup-

porting the existence of functionally diverse but physically in-

termingled circuits in V1.

We also found that GluN1 deletion cell-autonomously

abolished the plasticity of both response magnitude and

behavioral representation, which indicates that the experi-

ence-dependent response difference on correct and incorrect

responses does not simply reflect a change in the down-

stream correlation of V1 activity and motor output. Instead, in-

tracortical NMDAR-dependent plasticity appears to be a

fundamental contributor to the learning process. A large

body of work supports a role for NMDARs in both excitatory

and inhibitory synaptic plasticity (Chiu et al., 2019; Malenka

and Bear, 2004), and future studies are necessary to examine

whether modification of inputs to V1 PNs drives the functional

circuit reorganization observed here.

Despite our findings that V1 is necessary for learning and

performance of eyeblink conditioning and accurately encodes

behavior, the association between CS and US is most likely

driven by synaptic plasticity in the cerebellum (Freeman and
6 Cell Reports 32, 107970, July 28, 2020
Steinmetz, 2011), with the cortex providing a necessary

throughput for visual information to reach the brainstem via

pontine relays (Tang and Higley, 2020). We hypothesize that

during learning, plasticity within V1 circuits refines their ability

to gate this information flow, allowing behavior to be influ-

enced by the broader behavioral context. Overall, our results

indicate that excitatory and inhibitory V1 networks can multi-

plex stable representations of visual stimuli and dynamic rep-

resentations of behavioral output. This work provides evi-

dence that sensory and motor signals are inextricably linked,

even within early sensory areas, to support the generation of

complex behaviors.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead Contact

B Materials Availability

B Data and Code Availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Surgery

B Behavioral Setup

B Behavioral Training

B Calcium Imaging

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Behavioral analysis

B Imaging analysis and statistics
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

celrep.2020.107970.

ACKNOWLEDGMENTS

The authors are thankful to Dr. Lan Tang for initial design of the eyeblink-con-

ditioning task and helpful comments during analyses. We also wish to thank

Dr. Jessica A. Cardin as well as Mr. Daniel Barson, Dr. Tom Morse, and Dr.

Garrett Neske and other members of the Higley Laboratory for helpful com-

ments during the preparation of this manuscript. We thank Douglas Kim and

the GENIE Project for the GCaMP6 and GCaMP7 plasmids. This work was

supported by funding from the NIH/NIMH (R01 MH099045 and R01

MH113852 toM.J.H. and P30 EY026878 to the Yale Vision Core), the Yale Kavli

Institute for Neuroscience (M.J.H.), and a Yale University Brown-Coxe post-

doctoral fellowship (A.P.).

AUTHOR CONTRIBUTIONS

Experiments were conceived and designed by A.P. and M.J.H. Data were ac-

quired by A.P. Analyses and interpretation were designed and carried out by

A.P., H.B., and M.J.H. Manuscript was written by A.P. and M.J.H.

DECLARATION OF INTERESTS

The authors declare no competing interests.

https://doi.org/10.1016/j.celrep.2020.107970
https://doi.org/10.1016/j.celrep.2020.107970


Report
ll

OPEN ACCESS
Received: November 20, 2019

Revised: January 28, 2020

Accepted: July 8, 2020

Published: July 28, 2020

REFERENCES

Albergaria, C., Silva, N.T., Pritchett, D.L., and Carey, M.R. (2018). Locomotor

activity modulates associative learning in mouse cerebellum. Nat. Neurosci.

21, 725–735.

Atallah, B.V., Bruns, W., Carandini, M., and Scanziani, M. (2012). Parvalbumin-

expressing interneurons linearly transform cortical responses to visual stimuli.

Neuron 73, 159–170.

Blake, D.T., Heiser, M.A., Caywood, M., and Merzenich, M.M. (2006). Experi-

ence-dependent adult cortical plasticity requires cognitive association be-

tween sensation and reward. Neuron 52, 371–381.

Cardin, J.A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisser-

oth, K., Tsai, L.H., and Moore, C.I. (2009). Driving fast-spiking cells in-

duces gamma rhythm and controls sensory responses. Nature 459,

663–667.

Chen, J.L., Carta, S., Soldado-Magraner, J., Schneider, B.L., and Helm-

chen, F. (2013a). Behaviour-dependent recruitment of long-range projec-

tion neurons in somatosensory cortex. Nature 499, 336–340.

Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A.,

Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al. (2013b). Ultra-

sensitive fluorescent proteins for imaging neuronal activity. Nature 499,

295–300.

Chiu, C.Q., Lur, G., Morse, T.M., Carnevale, N.T., Ellis-Davies, G.C., and Hig-

ley, M.J. (2013). Compartmentalization of GABAergic inhibition by dendritic

spines. Science 340, 759–762.

Chiu, C.Q., Martenson, J.S., Yamazaki, M., Natsume, R., Sakimura, K., To-

mita, S., Tavalin, S.J., and Higley, M.J. (2018). Input-specific NMDAR-

dependent potentiation of dendritic GABAergic inhibition. Neuron 97, 368–

377.e363.

Chiu, C.Q., Barberis, A., and Higley, M.J. (2019). Preserving the balance:

diverse forms of long-term GABAergic synaptic plasticity. Nat. Rev. Neurosci.

20, 272–281.

Cichon, J., and Gan, W.B. (2015). Branch-specific dendritic Ca2+ spikes cause

persistent synaptic plasticity. Nature 520, 180–185.

Cooke, S.F., and Bear, M.F. (2010). Visual experience induces long-term

potentiation in the primary visual cortex. J. Neurosci. 30, 16304–16313.

Dana, H., Mohar, B., Sun, Y., Narayan, S., Gordus, A., Hasseman, J.P., Tse-

gaye, G., Holt, G.T., Hu, A., Walpita, D., et al. (2016). Sensitive red protein cal-

cium indicators for imaging neural activity. Elife 5, e12727.

Dubbs, A., Guevara, J., and Yuste, R. (2016). moco: fast motion correction for

calcium imaging. Front. Neuroinform. 10, 6.

Freeman, J.H., and Steinmetz, A.B. (2011). Neural circuitry and plasticity

mechanisms underlying delay eyeblink conditioning. Learn. Mem. 18,

666–677.

Frenkel, M.Y., Sawtell, N.B., Diogo, A.C., Yoon, B., Neve, R.L., and Bear, M.F.

(2006). Instructive effect of visual experience in mouse visual cortex. Neuron

51, 339–349.

Gavornik, J.P., and Bear, M.F. (2014). Learned spatiotemporal sequence

recognition and prediction in primary visual cortex. Nat. Neurosci. 17,

732–737.

Goltstein, P.M., Coffey, E.B., Roelfsema, P.R., and Pennartz, C.M. (2013).

In vivo two-photon Ca2+ imaging reveals selective reward effects on stim-

ulus-specific assemblies in mouse visual cortex. J. Neurosci. 33, 11540–

11555.

Hayama, T., Noguchi, J., Watanabe, S., Takahashi, N., Hayashi-Takagi, A., El-

lis-Davies, G.C., Matsuzaki, M., and Kasai, H. (2013). GABA promotes the

competitive selection of dendritic spines by controlling local Ca2+ signaling.

Nat. Neurosci. 16, 1409–1416.
Heiney, S.A., Wohl, M.P., Chettih, S.N., Ruffolo, L.I., and Medina, J.F.

(2014). Cerebellar-dependent expression of motor learning during

eyeblink conditioning in head-fixed mice. J. Neurosci. 34, 14845–

14853.

Hippenmeyer, S., Vrieseling, E., Sigrist, M., Portmann, T., Laengle, C.,

Ladle, D.R., and Arber, S. (2005). A developmental switch in the

response of DRG neurons to ETS transcription factor signaling. PLoS

Biol. 3, e159.

Jurjut, O., Georgieva, P., Busse, L., and Katzner, S. (2017). Learning enhances

sensory processing in mouse V1 before improving behavior. J. Neurosci. 37,

6460–6474.

Khan, A.G., Poort, J., Chadwick, A., Blot, A., Sahani, M., Mrsic-Flogel, T.D.,

and Hofer, S.B. (2018). Distinct learning-induced changes in stimulus selec-

tivity and interactions of GABAergic interneuron classes in visual cortex. Nat.

Neurosci. 21, 851–859.

Kwon, S.E., Yang, H., Minamisawa, G., and O’Connor, D.H. (2016). Sensory

and decision-related activity propagate in a cortical feedback loop during

touch perception. Nat. Neurosci. 19, 1243–1249.

Lee, S.H., Kwan, A.C., Zhang, S., Phoumthipphavong, V., Flannery, J.G., Mas-

manidis, S.C., Taniguchi, H., Huang, Z.J., Zhang, F., Boyden, E.S., et al. (2012).

Activation of specific interneurons improves V1 feature selectivity and visual

perception. Nature 488, 379–383.

Li, Z., Yan, A., Guo, K., and Li, W. (2019). Fear-related signals in the primary

visual cortex. Curr. Biol. 29, 4078–4083.e4072.

Lur, G., Vinck, M.A., Tang, L., Cardin, J.A., and Higley, M.J. (2016). Projection-

specific visual feature encoding by layer 5 cortical subnetworks. Cell Rep. 14,

2538–2545.

Makino, H., and Komiyama, T. (2015). Learning enhances the relative

impact of top-down processing in the visual cortex. Nat. Neurosci. 18,

1116–1122.

Malenka, R.C., and Bear, M.F. (2004). LTP and LTD: an embarrassment of

riches. Neuron 44, 5–21.

Moreno-Bote, R., Beck, J., Kanitscheider, I., Pitkow, X., Latham, P., and

Pouget, A. (2014). Information-limiting correlations. Nat. Neurosci. 17,

1410–1417.

Poort, J., Khan, A.G., Pachitariu, M., Nemri, A., Orsolic, I., Krupic, J., Bauza,

M., Sahani, M., Keller, G.B., Mrsic-Flogel, T.D., and Hofer, S.B. (2015).

Learning enhances sensory and multiple non-sensory representations in pri-

mary visual cortex. Neuron 86, 1478–1490.

Ress, D., and Heeger, D.J. (2003). Neuronal correlates of perception in early

visual cortex. Nat. Neurosci. 6, 414–420.

Rutkowski, R.G., and Weinberger, N.M. (2005). Encoding of learned impor-

tance of sound by magnitude of representational area in primary auditory cor-

tex. Proc. Natl. Acad. Sci. USA 102, 13664–13669.

Schoups, A., Vogels, R., Qian, N., and Orban, G. (2001). Practising orienta-

tion identification improves orientation coding in V1 neurons. Nature 412,

549–553.

Shuler, M.G., andBear, M.F. (2006). Reward timing in the primary visual cortex.

Science 311, 1606–1609.

Siegel, J.J., Taylor, W., Gray, R., Kalmbach, B., Zemelman, B.V., Desai, N.S.,

Johnston, D., and Chitwood, R.A. (2015). Trace eyeblink conditioning inmice is

dependent upon the dorsal medial prefrontal cortex, cerebellum, and amyg-

dala: behavioral characterization and functional circuitry. eNeuro 2,

ENEURO.0051-14.2015.

Tang, L., and Higley, M.J. (2020). Layer 5 circuits in V1 differentially control vi-

suomotor behavior. Neuron 105, 346–354.e345.

Taniguchi, H., He, M., Wu, P., Kim, S., Paik, R., Sugino, K., Kvitsiani, D.,

Fu, Y., Lu, J., Lin, Y., et al. (2011). A resource of Cre driver lines for ge-

netic targeting of GABAergic neurons in cerebral cortex. Neuron 71,

995–1013.

Tsien, J.Z., Chen, D.F., Gerber, D., Tom, C., Mercer, E.H., Anderson,

D.J., Mayford, M., Kandel, E.R., and Tonegawa, S. (1996). Subregion-
Cell Reports 32, 107970, July 28, 2020 7

http://refhub.elsevier.com/S2211-1247(20)30951-7/sref1
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref1
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref1
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref2
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref2
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref2
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref3
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref3
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref3
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref4
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref4
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref4
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref4
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref5
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref5
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref5
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref6
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref6
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref6
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref6
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref7
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref7
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref7
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref8
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref8
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref8
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref8
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref9
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref9
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref9
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref10
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref10
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref10
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref11
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref11
http://refhub.elsevier.com/S2211-1247(20)30951-7/optlbg7TeayTZ
http://refhub.elsevier.com/S2211-1247(20)30951-7/optlbg7TeayTZ
http://refhub.elsevier.com/S2211-1247(20)30951-7/optlbg7TeayTZ
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref12
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref12
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref13
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref13
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref13
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref14
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref14
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref14
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref15
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref15
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref15
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref16
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref16
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref16
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref16
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref17
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref17
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref17
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref17
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref18
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref18
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref18
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref18
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref19
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref19
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref19
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref19
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref20
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref20
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref20
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref21
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref21
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref21
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref21
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref22
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref22
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref22
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref23
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref23
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref23
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref23
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref24
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref24
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref25
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref25
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref25
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref26
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref26
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref26
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref27
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref27
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref28
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref28
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref28
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref29
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref29
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref29
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref29
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref30
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref30
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref31
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref31
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref31
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref32
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref32
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref32
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref33
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref33
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref34
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref34
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref34
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref34
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref34
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref35
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref35
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref36
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref36
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref36
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref36
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref37
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref37


Report
ll

OPEN ACCESS
and cell type-restricted gene knockout in mouse brain. Cell 87, 1317–

1326.

Vinck, M., Batista-Brito, R., Knoblich, U., and Cardin, J.A. (2015). Arousal and

locomotion make distinct contributions to cortical activity patterns and visual

encoding. Neuron 86, 740–754.

Wang, Y., Wu,W., Zhang, X., Hu, X., Li, Y., Lou, S., Ma, X., An, X., Liu, H., Peng,

J., et al. (2016). Amousemodel of visual perceptual learning reveals alterations

in neuronal coding and dendritic spine density in the visual cortex. Front. Be-

hav. Neurosci. 10, 42.
8 Cell Reports 32, 107970, July 28, 2020
Wiest, M.C., Thomson, E., Pantoja, J., and Nicolelis, M.A. (2010). Changes in

S1 neural responses during tactile discrimination learning. J. Neurophysiol.

104, 300–312.

Yan, Y., Rasch, M.J., Chen, M., Xiang, X., Huang, M., Wu, S., and Li, W. (2014).

Perceptual training continuously refines neuronal population codes in primary

visual cortex. Nat. Neurosci. 17, 1380–1387.

Yang, T., and Maunsell, J.H. (2004). The effect of perceptual learning on

neuronal responses in monkey visual area V4. J. Neurosci. 24, 1617–1626.

http://refhub.elsevier.com/S2211-1247(20)30951-7/sref37
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref37
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref38
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref38
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref38
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref39
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref39
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref39
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref39
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref40
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref40
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref40
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref41
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref41
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref41
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref42
http://refhub.elsevier.com/S2211-1247(20)30951-7/sref42


Report
ll

OPEN ACCESS
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

AAV5-Syn-Flex-GCaMP6f-WPRE-SV40 Chen et al., 2013b Addgene Cat#100845

AAV5-Syn-GCaMP6s-WPRE-SV40 Chen et al., 2013b Addgene Cat#100843

AAV5-Syn-jGCaMP7b-WPRE-SV40 Dana et al., 2016 Addgene Cat#104489

AAV8-Ef1a-Cre-tdTomato Baylor Vector Core Baylor Vector Core ‘‘AAV8-Ef1a-Cre-tdTomato’’

Experimental Models: Organisms/Strains

c57 Bl/6 mice Envigo Catalog specified as ‘‘C57BL/6 inbred mice’’

SST-Cre mice Taniguchi et al., 2011 JAX 013044

VIP-Cre mice Taniguchi et al., 2011 JAX 031628

PV-Cre Hippenmeyer et al., 2005 JAX 008069

Conditional GluN1 mice Tsien et al., 1996 JAX 005246

Software and Algorithms

ImageJ Moco Algorithm Dubbs et al., 2016 https://github.com/NTCColumbia/moco

MATLAB The Mathworks Version 2018a, Statistics and Machine Learning Toolbox,

https://www.mathworks.com/products/statistics.html
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr.

Michael J. Higley (m.higley@yale.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The datasets and code supporting the current study have not been deposited in a public repository due to file size limitations, but are

available from the corresponding author on reasonable request. All data are presented in the paper and supplementarymaterials. The

datasets generated during the current study are available from the corresponding author on reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals were handled in accordance with the Yale Institutional Animal Care and Use Committee and federal guidelines. C57BL/6

mice were purchased from Envigo. PVCre/ C57/BL6 (Jackson laboratory, RRID: IMSR_JAX:008069), SSTCre/ C57/BL6 (Jackson lab-

oratory, RRID: IMSR_JAX:013044), VIPCre/ C57/BL6 (Jackson laboratory, RRID: IMSR_JAX:031628) and GluN1fl/fl (Jackson labora-

tory, RRID: IMSR_JAX: 005246) mice were bred in-house from animals originally purchased from Jackson Laboratory (Hippenmeyer

et al., 2005; Taniguchi et al., 2011; Tsien et al., 1996). Animals of both sexes were used and aged 8-10 weeks old at the beginning of

the experimental procedures. All mice were group housed (2-3 same-sex animals per cage) under a 12 h/12 h light/dark cycle with

water and food provided ad libitum. From the day of the first stereotaxic surgery, animals were fed sulfatrimmouse chow (Uniprim). All

experiments were performed during the light phase of the daily cycle. In all housing and experimental rooms, the temperature was

maintained at 23-24�C, with humidity levels between 35% and 45%.

METHOD DETAILS

Surgery
Five weeks prior to imaging and behavioral experiments, mice were injected stereotactically with an adenoassociated viral (AAV) vec-

tor driving expression of a genetically encoded calcium indicator either in non-specific neuron populations (AAV5-syn-

GCamP6s, C57BL/6 mice), targeted populations of interneurons (AAV5-syn-flex-GCamp6f, PVCre/ C57/BL6, SSTCre/ C57/BL6 or
Cell Reports 32, 107970, July 28, 2020 e1
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VIPCre/C57/BL6mice), or thalamocortical axonal terminals arising from the lateral geniculate nucleus (AAV5-syn-jGCaMP7b, C57BL/

6 mice) (Chen et al., 2013b; Dana et al., 2016). To examine the effects of deletion of the GluN1 subunit of the NMDA-type glutamate

receptor, GluN1fl/fl animals were injected with AAV5-syn-GCamP6s and dilute AAV5-EF1a-iCre-TdTomato (Baylor Vector Core,

1:300 in saline). Mice were anesthetized with isoflurane and received subcutaneous injection of an analgesic and anti-inflammatory

drug (Carprofen 2mg/ml in saline, 5ml/kg). Mice were then placed in a stereotaxic apparatus (David Kopf Instruments) and their scalp

shaved and disinfected with 70% ethanol. Ocular lubricant was used to protect animals’ eyes from drying during surgery. To deliver

the viruses into the left visual cortex (V1, coordinates AP: �0.35 cm; LM: �0.25 cm; DV: �0.055 cm) and dorsal lateral geniculate

nucleus (dLGN, coordinates AP: �0.235 cm; LM: �0.2 cm; DV: �0.29 cm), we used a Nanofil 36G beveled needle inserted through

a small craniotomy. The syringe was connected to a Micro Syringe Pump (World Precision Instruments) used to deliver virus (0.5-

0.7 mL or 0.2 mL of total volume for cortical or thalamic injections respectively, 100 nl/min). After the injection, the needle remained

in the brain for 5 min to allow for diffusion of the virus. Seven to ten days after viral injections, animals were implanted with cranial

windows and titanium head-posts. Subjects were anesthetized with isoflurane and received subcutaneous injection of an analgesic

and anti-inflammatory drug (Carprofen 2mg/ml in saline, 5ml/kg). Skin and periosteum were reflected and the skull was cleaned with

saline and dried. Two screwswere set into the skull over the right hemisphere, and a custom-made titanium headpost (~2g) was fixed

to the bone with dental cement (Metabond, Parkell). A craniotomy (approx. 4 mm2) was made over the left V1 and a bilayer cranial

window (5x5mm No. 1 cover glass and 3.5x3.5 No. 1 cover glass, bonded using ultraviolet-curing adhesive, Norland Products) was

inserted into the opening and fixed to the skull using instant glue (Krazy Glue) and dental cement (Metabond, Parkell).

Behavioral Setup
The mouse was head-fixed on a freely-moving wheel (15 cm diameter) under the objective of a 2-photon microscope located in a

light-proof chamber. Visual stimuli were displayed on a computer monitor positioned normal to and 22 cm away from the right

eye. Air-puffs (10-12 psi) were delivered to the right cornea via a small metal cannula coupled to a compressed air tank and gated

by a solenoid (Clark Solutions). Timing of the air puff was coordinated with the visual stimulus using custom-written MATLAB codes

through a NI-DAQmx board (PCIe-6315, National Instruments) at a sampling rate of 5 kHz. Eyelid closure and pupil diameter were

continuously recorded using a monochromatic CMOS camera (PointGrey FlyCapture3) at a frame rate of 33 fps. An infrared LED

array was used to illuminate the eye. All signals, including the timing of the visual stimuli, the air puffs, the wheel position, video frame

ticks, and microscope resonant scanner frame ticks were digitized (5 kHz) and collected through a Power 1401 (CED) acquisition

board using Spike 2 software.

Behavioral Training
Starting nine days prior to training,micewere habituated to head-fixation while placed on a freely-moving runningwheel (15 cmdiam-

eter), gradually increasing from a few minutes to one hour over this period. After habituation, training consisted of 75 daily presen-

tations to the right eye of a 500 ms visual stimulus (CS+) presented on a gamma-corrected monitor (20� sinusoidally drifting grating,

0.05 cycles per degree, 1 cycle/sond, 100%contrast). For each animal, the stimulus location was fixed in one of nine 3x3 sub-regions

of the screen that evoked the largest population response in the field of view. Each stimulus co-terminated with a 50 ms air-puff

directed to the ipsilateral cornea. Training was carried out over 14 consecutive days (Days 1-14). In addition to this protocol, on

the day preceding training (Day 0) and the day following training (Day 15), each animal was presented with 50 CS presentations in

the absence of a coupled air-puff. For all training days, the inter-trial interval was 9-13 s, with each trial value randomly selected

from a flat hazard distribution.

Calcium Imaging
Imaging was carried out using a two-photon Movable Objective Microscope (MOM) with a galvo-resonant scanner (Sutter Instru-

ments) through a 25x, 1.05 NA objective (Olympus) coupled to a Ti-sapphire laser (MaiTai eHP DeepSee, SpectraPysics) tuned to

920 nm. Collection of tdTomato images were carried out at 1000 nm. Images were acquired using ScanImage 2017 (Vidrio) at

~30 Hz and a resolution of 256x256. The microscope and the perimeter of the objective were tightly wrapped in blackout material

to prevent light contamination from the LCD screen. Somata of layer 2/3 neurons were imaged at approximately 180-300 mm depth

relative to the brain surface (Lur et al., 2016). Thalamocortical axons in layer 4 were imaged at 330-460 mmdepth. Chronic imaging of

neurons did not alter cell health as measured by the spontaneous activity of single cells (Figure S1).

QUANTIFICATION AND STATISTICAL ANALYSIS

Details for all statistical analyses, including statistical tests used, exact value of n, what n represents, and precision measures (e.g.,

mean, SEM) are provided in the Results section and in Table S1.

Behavioral analysis
Eyeblink videos were analyzed with customMATLAB scripts as previously described (Tang and Higley, 2020). Briefly, gray-scale im-

ages from each training session were binarized tomaximize the contrast between the eye (white) and surrounding fur (black). A region

of interest around the eye wasmanually defined, and the time-varying proportion of white to dark pixels was used as a readout of eye
e2 Cell Reports 32, 107970, July 28, 2020
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closure. These data were normalized by the 5th and 95th percentile values for each session, resulting in a range of 0 to 1, correspond-

ing to a fully open and fully closed eye, respectively. The conditioned response (CR) was defined as the maximum eye closure during

the 450 ms window between visual stimulus and air-puff onset. The unconditioned response (UR) was defined as the maximum eye

closure within a 500 ms window from the onset of the air-puff. Trials were identified as correct if the CR:UR ratio was larger than 0.1.

Trials were excluded from analysis if the eye closed > 10% within a 2 s window prior to visual stimulus onset. Spontaneous blinks (>

10% eye closure) were detected during the inter-trial-intervals. The spontaneous blink rate was calculated as the average number of

blinks per 450 ms interval to compare with the behavioral analysis window. Pupil size and locomotion (running speed) data were bi-

narized using the median normalized value and a cutoff of 1 cm/sec, respectively.

Imaging analysis and statistics
Images of neuronal activity were first motion-corrected using the Moco plugin for ImageJ (Dubbs et al., 2016). The first 150 frames of

each movie were used as a template with the maximal distance to be translated in the x and y directions between 20 and 40 pixels.

Videos from successive days were translated onto the first-day template. Regions of interest (ROIs) were selected manually (Lur

et al., 2016). Further data analysis was performed using customMATLAB scripts. Fluorescence (F) over time was measured by aver-

aging within the ROI, and contamination from the surrounding neuropil was removed with a discounting coefficient of 0.7 (Chen et al.,

2013b).DF/Fwas calculated as (F-F0)/F0, where F0was the lowest 10%of values from the neuropil-subtracted trace for each session.

To relate neuronal activity to behavior, we divided the data into 3 distinct learning phases of equal duration based on average per-

formance: early (days 1 to 3), mid (days 4 to 6), and late (days 12-14). All data were grouped within a single phase. The magnitude of

the visual response on each trial was defined in one of two ways: (1) the mean DF/F in a 300ms time window after visual stimulus

onset, subtracting the mean DF/F over the 300 ms preceding the stimulus or (2) the slope of the visual response measured as the

linear fit to DF/F within 300ms window following visual stimulus onset. Preliminary analyses revealed that the two measures were

strongly correlated with each other but the slope value yielded significantly lower variation across trials (Figure S1). Thus, slope

was primarily used for subsequent analyses. Machine learning was used to decode neuronal activity and assess the accuracy of pre-

dicting either the visual stimulus or the conditioned response. A linear Support Vector Machine (SVM) classifier was trained and

tested by using an available MATLAB toolkit, libsvm, with 5-fold cross-validation and bootstrapping to achieve balanced labels

for correct versus incorrect trials. To determine prediction accuracy for the visual stimulus, for each trial we quantified the slope

of DF/F for the 300ms preceding and following the visual stimulus onset. We also identified a similar matched pair of values obtained

for a randomly selected pseudo-onset during the inter-stimulus period. The model was trained to classify the presence of a visual

stimulus (i.e., distinguish trials from pseudo-trials). A similar approach was used to determine prediction accuracy for single cells

and for the population. To determine prediction accuracy for the conditioned response, we used only paired slope values corre-

sponding to actual stimulus onset times and trained the model to classify correct versus incorrect trials. Again, this approach was

used to determine single cell and population performance. To determine how population size influences behavioral prediction accu-

racy, we repeatedly trained the model on randomly drawn neuronal subsets of varying size. To investigate the relationship between

average single neuron performance and population performance, we simulated a distribution of 80 independent slope values for 75

trials, matching the means and variances of the actual neuronal data on correct and incorrect trials and across learning phases. We

then used these simulated values to train the same SVM model and assess simulated accuracy.

For all statistical comparisons of neuronal data, values were averaged within each animal, and final analyses were performed with

animal number as the degree of freedom.We opted for this approach given the inherent lack of independence for cells imaged within

the same animal. The analysis of simulated neuronal performance was an exception to this approach, given the inherent structure of

the data. Statistical tests included paired and one-sample t tests using an alpha value of 0.05, Kolmogorov-Smirnoff tests, and Spear-

man’s rank correlation. Planned comparisons were explicitly carried out for early and late learning phases (mid-phase data shown

only for completeness of data representation).
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