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Stress Impairs Prefrontal Cortical Function via
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Hyperpolarization-Activated Cyclic Nucleotide-
Gated Channels
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ABSTRACT
BACKGROUND: Psychiatric disorders such as schizophrenia are worsened by stress, and working memory deficits
are often a central feature of illness. Working memory is mediated by the persistent firing of prefrontal cortical (PFC)
pyramidal neurons. Stress impairs working memory via high levels of dopamine D1 receptor (D1R) activation of cyclic
adenosine monophosphate signaling, which reduces PFC neuronal firing. The current study examined whether D1R-
cyclic adenosine monophosphate signaling reduces neuronal firing and impairs working memory by increasing the
open state of hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels, which are concentrated on
dendritic spines where PFC pyramidal neurons interconnect.
METHODS: A variety of methods were employed to test this hypothesis: dual immunoelectron microscopy localized
D1R and HCN channels, in vitro recordings tested for D1R actions on HCN channel current, while recordings in
monkeys performing a working memory task tested for D1R-HCN channel interactions in vivo. Finally, cognitive
assessments following intra-PFC infusions of drugs examined D1R-HCN channel interactions on working memory
performance.
RESULTS: Immunoelectron microscopy confirmed D1R colocalization with HCN channels near excitatory-like
synapses on dendritic spines in primate PFC. Mouse PFC slice recordings demonstrated that D1R stimulation
increased HCN channel current, while local HCN channel blockade in primate PFC protected task-related firing from
D1R-mediated suppression. D1R stimulation in rat or monkey PFC impaired working memory performance, while
HCN channel blockade in PFC prevented this impairment in rats exposed to either stress or D1R stimulation.
CONCLUSIONS: These findings suggest that D1R stimulation or stress weakens PFC function via opening of HCN
channels at network synapses.
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Dysfunction of the prefrontal cortex (PFC) is central to
cognitive deficits observed in many psychiatric disorders (1).
The PFC uses representational knowledge to provide top-
down guidance of behavior, thought, and affect (2). The
working memory functions of PFC are rapidly and markedly
impaired by exposure to even mild, uncontrollable stress (3).
Dopamine (DA) D1 receptor (D1R) signaling via cyclic adeno-
sine monophosphate (cAMP) plays a critical role in PFC
function, producing an inverted U-shaped dose-response
curve whereby moderate levels improve PFC function, while
higher levels impair function, e.g., taking PFC offline during
stress (4,5). While the PFC expands and differentiates greatly
from rodents to primates, there are some effects that bridge
across species, e.g., the D1R inverted U-shaped dose-
response curve with impairment at high levels of DA
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stimulation has been observed in mice (6), rats (4), monkeys
(7), and humans (8,9). The detrimental effects of high levels of
D1R stimulation during stress are particularly important to
understand, as D1Rs are altered in disorders such as schizo-
phrenia (10,11), and the symptoms of such disorders are often
precipitated or exacerbated by stress (3,12).

Much of the research on the molecular mechanisms of PFC
function has focused on spatial working memory in animal
models. In primates, spatial working memory is mediated by
recurrent excitation among networks of pyramidal neurons in
layer III and likely layer V that sustain firing over a delay period in
dorsolateral PFC (DLPFC), considered to be the electrophysio-
logical correlate of representational knowledge (2,13,14). Main-
tenance of persistent firing depends upon effective contacts
between pyramidal neurons via N-methyl-D-aspartate (NMDA)
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receptor synapses at dendritic spines (2,15). These networks
can be spatially tuned by lateral inhibition from gamma-
aminobutyric acidergic interneurons (2,16,17) and are dynam-
ically altered by neuromodulators via intracellular signaling at
the spine, referred to as dynamic network connectivity (18).
Moderate levels of D1R stimulation enhance spatial tuning by
sculpting away noise, reducing neuronal firing for nonpreferred
directions, while higher levels of D1R stimulation erode all task-
related firing (5).

Exposure to stress produces high levels of DA release in the
rodent PFC, and D1R-mediated generation of cAMP reduces
PFC network firing and impairs working memory (4,5,19).
Similarly, direct application of D1R agonists onto DLPFC
neurons reduces delay-related firing via increased cAMP in
monkeys performing a working memory task (5), and high
doses of D1R agonists impair spatial working memory in mice
(6), rats (4), and monkeys (7). However, it is not understood how
D1R stimulation reduces PFC neuronal firing, as D1Rs can have
multiple actions in PFC, e.g., in layer V neurons of ferrets and
rodents, D1R stimulation can reduce glutamate release from
axon terminals (20) or alter opening of calcium channels (21).
D1Rs may also reduce firing by increasing the open probability
of hyperpolarization-activated cyclic nucleotide-gated (HCN)
cation channels via cAMP. Previous research has shown that
cAMP reduces PFC neuronal firing by increasing the open state
of HCN channels on dendritic spines (22). In cerebral cortex,
HCN1 and HCN2 subunits form heterotetramers that are
particularly responsive to cAMP (23–25) and associate with
cAMP-regulating proteins in spines of monkey layer III DLPFC
(22,26). In monkeys performing a working memory task, low
doses of an HCN channel blocker, such as ZD7288, enhance
task-related DLPFC neuronal firing, whereas treatments that
increase the HCN channel current (Ih) reduce firing (22).

The current study investigated whether high levels of D1R
stimulation, as occur during stress exposure, reduce PFC
neuronal firing and impair working memory through cAMP
interactions with HCN channels. Understanding the molecular
basis of cognitive function requires molecular, cellular, and
behavioral approaches. Thus, we employed a cross-species
approach, integrating monkey anatomy and in vivo physiology,
mouse in vitro physiology, and rat and monkey behavior.
METHODS AND MATERIALS

All procedures were approved by the Yale Institutional Animal
Care and Use Committee.

Immunoelectron Microscopy

Brains of two adult, male rhesus macaques (Macaca mulatta)
were fixed via transcardial perfusion and blocked coronally.
Sections of DLPFC were used for dual immunolabeling using
peroxidase and/or gold immunoprobes for D1Rs and the
HCN1 subunit of HCN channels. Tissue processing and all
immunoprocedures, including antibody characterization, are
described in detail in Paspalas et al. (26).

Monkey In Vivo Recordings

Subjects. Two adult, male rhesus macaques, C (13 years old)
and P (7 years old), were housed individually under standard
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laboratory conditions. A highly palatable juice reward was
used to minimize need for dietary regulation. Water was
provided ad libitum, and animals were fed monkey chow
(Purina Mills, Gray Summit, Missouri) and fruit immediately
following testing. Care was taken to habituate them to all
procedures.

Spatial Working Memory Task, Physiological Recording,
and Iontophoresis in Monkey DLPFC. Monkeys were trained
on the oculomotor delayed response (ODR) task, a test of
spatial working memory as outlined in Figure 1A. Single-unit
recordings were performed in the principal sulcus region of
DLPFC (Figure 1B), the brain region typically associated with
performance of the ODR task (13). Many regularly spiking
neurons (presumed pyramidal neurons) in DLPFC exhibit
persistent firing that is maintained throughout the delay period
(delay cells). Spatial tuning is observed in a large subset of
delay cells, whereby they increase firing during the delay
period following a cue in their preferred direction but show
smaller increases or even inhibition of firing for nonpreferred
directions (2) (Figure 1C). The microcircuitry underlying spa-
tially tuned delay-related firing is shown in Figure 1D.

Once delay cell firing was stabilized, drugs were applied
via iontophoresis in minute amounts that were insufficient to
alter behavior (Supplementary Methods and Materials in
Supplement 1). Drugs were applied in the following sequence
for at least six trials for each of the eight cue locations: 1)
control; 2) ZD7288 (5–10 nA; Tocris, Ellisville, Missouri); 3)
ZD7288 1 SKF38393 (20–25 nA; Tocris); 4) SKF38393; and 5)
recovery (Table S1 in Supplement 1 lists the drug conditions
applied to each neuron). Data were analyzed using analysis of
variance and circular regression using Stata (StataCorp LP,
College Station, Texas) (Supplementary Methods and
Materials in Supplement 1). A working model of molecular
mechanisms that weaken PFC network connectivity at den-
dritic spines is illustrated in Figure 1E.

Mouse In Vitro Recordings

Whole-cell current-clamp recordings were obtained from layer V
pyramidal neurons in mouse (postnatal days 22–28) PFC slices;
very young animals are needed to enhance slice viability. HCN
channels are prominent along the dendrites of layer V pyramidal
neurons in both monkeys and rodents (26,27). In electrophysio-
logical recordings, these cells exhibit a prominent sag current in
response to hyperpolarizing voltage steps, corresponding to the
slow activation kinetics of Ih (27,28).

To measure Ih, a 400-ms hyperpolarizing current (2300 pA)
was injected via the patch pipette. Ih was quantified as the
ratio of the peak hyperpolarization to the steady state value
during the pulse. SKF81297 (10 mmol/L; Tocris) was bath-
applied, and the response in membrane potential was meas-
ured. Ih values were compared between control and SKF81297
conditions using paired t tests.

Rat Behavioral Studies

Subjects. Young adult male Sprague Dawley rats (Taconic,
Germantown, New York) were housed individually under
standard laboratory conditions. They were kept on a 12-hour
light/dark cycle, and behavioral experiments were conducted
during the light phase. Highly palatable rewards (chocolate
iatry December 15, 2015; 78:860–870 www.sobp.org/journal 861
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Figure 1. Single-unit recording from monkey dorsolateral prefrontal cortex (DLPFC) was combined with drug iontophoresis in monkeys performing the
oculomotor delayed response task. (A) The oculomotor delayed response task, a test of spatial working memory. The monkey was seated in front of a screen,
and the trial began when he fixated on a central target on the screen for .5 second (fixation period). Next, a cue appeared briefly (.5 second) in one of eight
peripheral locations on the screen (cue period), followed by a 2.5-second delay period, during which the monkey continued to maintain fixation. At the end of
the delay period, the fixation target was extinguished, and the monkey was required to make a memory-guided saccade to the remembered location of the
cue (response period); monkeys were rewarded with a drop of juice for each correct response. Each test session consisted of hundreds of trials across which
the cued location randomly changed, thus requiring the monkey to update his working memory. The TEMPO Experiment Control System (Reflective
Computing, St. Louis, Missouri) generated the task, while the ISCAN Eye Movement Monitoring System (ISCAN Inc., Woburn, Massachusetts) monitored eye
position. (B) Single-unit recording was performed in DLPFC. (C) Firing patterns of a sample neuron from the current study. Under optimal conditions, neurons
show delay-related firing for a preferred direction (e.g., 2251) but suppress firing for nonpreferred directions (2). The dark gray background indicates the cue
period, and the light gray background indicates the delay period. (D) Circuit basis for spatial working memory (2). Spatial working memory is maintained in
DLPFC by recurrent excitation among networks of N-methyl-D-aspartate receptor (NMDA-R) glutamatergic pyramidal neurons with shared stimulus inputs
(e.g., 2251). Spatial tuning is enhanced by lateral inhibition of nonpreferred inputs (e.g., 451) from gamma-aminobutyric acid (GABA)ergic interneurons (16). (E)
Working model of molecular mechanisms that weaken prefrontal cortex network connectivity. Cyclic adenosine monophosphate (cAMP) directly increases the
open probability of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, while ZD7288 blocks them. Dynamic network connectivity signaling
proteins are often found in long, thin spines with narrow spine necks at NR2B NMDA-R synapses in layer III monkey DLPFC (2). AC, adenylyl cyclase; AS,
arcuate sulcus; Ca11, calcium; D1R, D1 receptor; Na1, sodium; PS, principal sulcus.
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chips) were used during the experiments to minimize need for
dietary regulation. Water was provided ad libitum, and animals
were fed 12 g to 16 g of autoclaved rat chow (Purina Mills)
immediately following testing. They were weighed weekly, and
weights were maintained at 400 g to 450 g. The rats were
habituated to all procedures and tested by a single experi-
menter, who was blind to drug treatment conditions.

Spatial Working Memory Task and Drug Infusions Into
Rat Prelimbic PFC. Rats were trained individually in a delayed
alternation spatial working memory task in a T-shaped maze
(Supplementary Methods and Materials in Supplement 1).

The medial PFC, including prelimbic PFC, is required
for delayed response tasks and behavioral flexibility in rats
862 Biological Psychiatry December 15, 2015; 78:860–870 www.sobp
(29–35). Rats were implanted with chronic infusion cannulae
directed above prelimbic PFC (anterior-posterior 13.2 mm;
medial-lateral 6.75 mm; dorsal-ventral 24.2 mm) (36) or in a
control region above the dorsal anterior cingulate cortex (ACd)
(anterior-posterior 13.2 mm; medial-lateral 6.75 mm; dorsal-
ventral 22.0 mm), a region that is not needed for the delayed
alternation task (37,38) (Figure 2). Drug was slowly infused at
.25 μL/min. Mock treatments adapted rats to all procedures
(Supplementary Methods and Materials in Supplement 1).
Experiments used a within-subjects design, with at least a
1-week washout period between treatments.

In the first experiment, we tested whether blocking HCN
channels with ZD7288 would prevent the impairing effects of
.org/journal
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Figure 2. Drug infusions into
rat prelimbic prefrontal cortex.
Rats were implanted with chronic
infusion cannulae directed above
prelimbic prefrontal cortex (PL)
(anterior-posterior [AP] 13.2 mm;
medial-lateral [ML] 6.75 mm; dor-
sal-ventral [DV] 24.2 mm) or dor-
sal anterior cingulate cortex (ACd)
(AP 13.2 mm; ML 6.75 mm; DV
22.0 mm), as indicated by boxes.
IL, infralimbic cortex.
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D1R agonist infusion into prelimbic PFC. Each rat (n 5 6)
received the following four treatments in pseudorandom order:
1) ZD7288 1 SKF81297; 2) ZD7288 1 vehicle; 3) vehicle 1

SKF81297; and 4) vehicle 1 vehicle. ZD7288 (.001 μg/.5 μL)
was infused into PFC 30 minutes before testing, as described
in Wang et al. (22), as this dose had no effect on performance
on its own in pilot studies. Thus, any effect of the drug on
working memory performance would be due to an interaction
between ZD7288 and SKF81297, rather than to nonspecific
additive effects of the two treatments. Pilot studies determined
a dose of SKF81297 (.001 μg to .5 μg/.5 μL) for each rat that
impaired accuracy. Previous research showed that SKF81297
must be infused into prelimbic PFC to be effective (4).
SKF81297 and ZD7288 were made daily by dissolving them
in sterile saline to the appropriate concentrations.

In the second experiment, we examined whether ZD7288
would also block working memory impairments induced by a
pharmacologic stressor, FG7142. FG7142 is a benzodiazepine
partial inverse agonist that mimics the stress (39). This
pharmacologic stressor was used instead of physical stres-
sors (e.g., restraint stress), as it minimizes habituation that
occurs with repeated physical stressors (40). Pilot studies
determined an FG7142 dose (3.0 mg to 7.5 mg/kg; Tocris) for
each rat that impaired accuracy but allowed task performance.
Each rat (n 5 5) received the following four treatments in
pseudorandom order: 1) ZD7288 1 FG7142; 2) ZD7288 1

vehicle; 3) vehicle 1 FG7142; and 4) vehicle 1 vehicle.
FG7142 was suspended in solution (Supplementary Methods
and Materials in Supplement 1) and injected intraperitoneally
30 minutes before testing, as described in Birnbaum et al. (41).
ZD7288 (.001 mg/.5 mL) was infused into PFC 30 minutes
before testing, as described above.

Finally, an anatomical control experiment was performed to
verify that ZD7288 improved performance via actions in
prelimbic PFC, rather than via drug diffusion up the cannulae.
This study followed the above methods, except that ZD7288
was infused in ACd (n 5 7).

Histologic Verification of Cannula Positions

Following completion of the experiments, the locations
of the cannulae were verified by histologic examination
Biological Psych
(Supplementary Methods and Materials in Supplement 1).
Only data from rats with correctly placed cannulae were
analyzed (Figure S1 in Supplement 1).

Behavioral Data Analysis

Data were analyzed using two-way analysis of variance with
repeated measures with within-subjects factors of HCN chan-
nel blockade (ZD7288 vs. vehicle) and D1R stimulation
(SKF81297 vs. vehicle) or stress (FG7142 vs. vehicle). User-
defined contrasts then compared performance between pairs
of drug conditions. Statistical analyses were performed using
Systat.

Monkey Behavior

Parallel behavioral experiments were performed in a monkey
performing the ODR task with unilateral infusions of vehicle
(10 mL or 20 mL) or SKF81297 (10 mmol/L; 10 mL or 20 mL) into
DLPFC (Supplementary Methods and Materials in Supplement 1).
Previous research showed that unilateral lesions of DLPFC
impaired working memory for cues in the visual field contrala-
teral to the lesion site (42).
RESULTS

HCN Channels and D1Rs Colocalize in Dendritic
Spines of Monkey DLPFC

Dual immunoelectron microscopy revealed coexpression of
D1Rs and HCN channels in pyramidal neurons, as well as
spatial interaction on spine membranes in layer III monkey
DLPFC. Both proteins were localized in the synthetic machi-
nery in the soma (Figure 3A) and colocalized at the plane of the
plasma membrane of dendritic spines (Figure 3B–E). Although
HCN channels are prominent along the distal pyramidal
dendrites, D1Rs are not present at this location (26). Thus,
colocalization was found in the spine head near the synapse
(Figure 3B,C,E) and in the spine neck (Figure 3D), where D1Rs
could generate cAMP next to HCN channels and regulate their
open state. These findings built on previous work revealing
HCN channel interaction with key cAMP-regulating molecules
(26).

D1R Stimulation Suppressed PFC Delay-Related
Firing via Opening of HCN Channels in Monkeys
Performing a Working Memory Task

This experiment examined whether the HCN channel blocker,
ZD7288, could block the impairing effect of the D1R agonist,
SKF38393, on delay-related firing in DLPFC. Two monkeys
(C and P) were trained to perform an ODR spatial working
memory task (Figure 1A), while 42 delay-related cells (25 from
monkey C; 17 from monkey P) with varying degrees of spatial
tuning were recorded in DLPFC. For tuned neurons, the
preferred direction was determined by circular regression,
whereas for neurons without significant tuning, the direction
with the highest mean firing during the delay period was
selected as the preferred direction for further analyses.
Neurons were only included in the analyses if their activity
during the ZD7288 1 SKF38393 condition did not change
significantly with time or trial number. As a result, one neuron
iatry December 15, 2015; 78:860–870 www.sobp.org/journal 863
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Figure 3. Dual immunoelectron microscopy for hyperpolarization-acti-
vated cyclic nucleotide-gated channel subunit 1 (HCN1) and dopamine D1

receptors (D1Rs) in monkey dorsolateral prefrontal cortex. (A) HCN1
channels (red arrows) and D1Rs (yellow arrows) were coexpressed in layer
III pyramidal neurons in the Golgi and reticular endomembranes, showing
that D1Rs are manufactured by layer III pyramidal cells. (B–E) In the
neuropil, HCN1 channels and D1Rs were colocalized in dendritic spines,
as shown by gold-gold (B) or peroxidase-gold (C–E) labeling. HCN1
channels were localized at the elongated spine neck with D1Rs positioned
at the base of the emerging spine (D). An oblique section through a synapse
(the synaptic disk is indicated by multiple arrows) demonstrated perisynap-
tic localization for both proteins (E); lead-contrasting was omitted from (E)
to facilitate visualization of D1R-immunoperoxidase. Black arrows point to
axospinous synapses. Scale bars: 200 nm.
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from monkey C (r 5 2.90, p 5 .014 vs. time; r 5 2.81, p 5

.052 vs. trial number) and one neuron from monkey P (r 5

2.86, p 5 .0003 vs. time; r 5 2.87, p 5 .0002 vs. trial number)
were excluded. As Vijayraghavan et al. (5) already established
that D1R stimulation suppressed PFC firing, the remaining 16
cells (8 from monkey C; 8 from monkey P) that showed
reduced delay-related firing with SKF38393 were analyzed.
Of these, 8 cells (4 from monkey C; 4 from monkey P) showed
spatial tuning during the control condition, as determined by
circular regression.

As shown in Figure 4A, drug application significantly altered
neuronal firing relative to the control condition (F2,30 5 30.671,
p , .0005; n 5 16 neurons). User-defined contrasts revealed
that iontophoresis of SKF38393 alone significantly reduced
firing relative to the control condition (F1,15 5 84.151,
864 Biological Psychiatry December 15, 2015; 78:860–870 www.sobp
p , .0005). However, co-application of ZD7288 and
SKF38393 led to significantly higher firing than with
SKF38393 alone (F1,15 5 26.364, p , .0005) and was similar
to the control condition (F1,15 5 2.365, p 5 .145). Thus,
blockade of HCN channels prevented the suppression of firing
caused by D1R stimulation. Figure 4B shows the drug effects
on population firing across all task epochs.

A subset of neurons was sufficiently stable over long testing
sessions to assess ZD7288 alone, in addition to the other
conditions. These neurons showed a significant main effect of
drug treatment (F4,20 5 6.017, p 5 .002; n 5 6) (Figure 5A).
User-defined contrasts showed that there was no significant
effect of ZD7288 alone relative to the control condition (F1,5 5
.621, p 5 .467) and that the control condition levels of firing
were maintained following co-application of ZD7288 and
SKF38393 (F1,5 5 1.351, p 5 .298). However, removal of
ZD7288 while continuing iontophoresis of SKF38393 signifi-
cantly reduced firing relative to the control condition (F1,5 5

193.632, p , .0005) and to ZD7288 1 SKF38393 (F1,5 5

16.607, p 5 .010). Figure 5B shows the drug effects on
population firing across all task epochs. Figure 6 shows
sample data from an individual neuron.

D1R Stimulation Opened HCN Channels in Mouse
PFC Slices

Whole-cell recordings from layer V pyramidal neurons in
mouse PFC slices were performed to verify that D1R stim-
ulation increased Ih. The D1R agonist, SKF81297, significantly
enhanced the hyperpolarization-induced sag in membrane
potential corresponding to Ih (p 5 .038 vs. the control
condition; n 5 7; Figure 7).

D1R Stimulation in PFC or Stress Impaired Working
Memory Performance via Opening of HCN Channels
in Rats

Effects of D1R Stimulation and HCN Channel Blockade on
Working Memory. Rats were trained in a T-maze spatial
working memory task to examine the behavioral effects of
D1R-HCN channel interactions. Infusions of ZD7288 into rat
medial PFC (Figure 2) significantly reversed the impairing
effects of SKF81297 on working memory (Figure 8A). There
was a significant main effect of ZD7288 (F1,5 5 26.03, p 5

.004) and trends toward a main effect of SKF81297 (F1,5 5

4.33, p 5 .092) and interaction between ZD7288 and
SKF81297 (F1,5 5 6.231, p 5 .055). User-defined contrasts
revealed that SKF81297 significantly impaired performance
relative to vehicle (F1,5 5 15.92, p 5 .010), in agreement with
previous findings (4,5). Coinfusion of ZD7288 reversed this
impairment (ZD7288 1 SKF81297 vs. SKF81297: F1,5 = 40.00,
p = .001) to performance levels similar to vehicle (F1,5 = .12,
p = .74). ZD7288 alone did not significantly affect performance
relative to vehicle (F1,5 = .36, p = .57), which verified that the
effects observed with ZD7288 1 SKF81297 were not due to
nonspecific additive effects.

Effects of Pharmacologic Stress and HCN Channel
Blockade on Working Memory. Infusions of ZD7288 into
rat medial PFC significantly reversed the impairing effects of
the pharmacologic stressor, FG7142, on working memory
(Figure 8B). There was a significant main effect of ZD7288
.org/journal
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Figure 4. The D1 receptor agonist, SKF38393 (SKF), suppressed delay-related firing, and this suppression was blocked by the hyperpolarization-activated
cyclic nucleotide-gated channel blocker, ZD7288 (ZD), in monkeys performing the oculomotor delayed response task (n 5 16 neurons). (A) Drug effects on the
mean firing rate during the delay period. Error bars represent SEM. *p , .0005 versus control, ZD 1 SKF. (B) Drug effects on population firing across all task
epochs. The dotted line indicates onset of the fixation period, the dark gray background indicates the cue period, and the light gray background indicates the
delay period.
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(F1,4 5 10.39, p 5 .032), a nonsignificant main effect of
FG7142 (F1,4 5 3.55, p 5 .133), and a significant interaction
between ZD7288 and FG7142 (F1,4 5 25.76, p 5 .007). User-
defined contrasts revealed that FG7142 1 vehicle significantly
impaired performance relative to vehicle (F1,4 5 35.71, p 5

.004), in agreement with previous findings (43). Infusion of
ZD7288 reversed this impairment (ZD7288 1 FG7142 vs.
FG7142: F1,4 5 28.24, p 5 .006), returning performance to
vehicle levels (F1,4 5 .074, p 5 .80). ZD7288 alone did not
significantly affect performance relative to vehicle (F1,4 5 2.25,
p 5 .21), which verified that the effects observed with ZD7288
1 FG7142 were not due to nonspecific additive effects.

Anatomical control experiments verified that ZD7288
improved working memory via actions in prelimbic PFC,
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rather than via drug diffusion up the cannulae (Figure 8C).
When ZD7288 was infused into ACd (Figure 2), there was
no significant main effect of ZD7288 (F1,6 5 1.23, p 5 .309),
a significant main effect of FG7142 (F1,6 5 45.14, p 5 .001),
and no significant interaction between ZD7288 and
FG7142 (F1,6 5 2.87, p 5 .14). User-defined contrasts
revealed that FG7142 significantly impaired performance
relative to vehicle (F1,6 5 28.90, p 5 .002). Coinfusion of
ZD7288 did not reverse this impairment (ZD7288 1 FG7142
vs. FG7142: F1,6 5 2.21, p 5 .19), and performance
following ZD7288 1 FG7142 was still significantly impaired
relative to vehicle (F1,6 5 15.28, p 5 .008). Again, ZD7288
alone did not significantly affect performance relative to
vehicle (F1,6 5 .092, p 5 .772).
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Figure 6. The
effects of SKF38393
(SKF) and ZD7288
(ZD) on neuronal firing
in an individual neuron
recorded in dorsolat-
eral prefrontal cortex
while a monkey per-
formed the oculomo-
tor delayed response
task. For the 1351
direction, the neuron
showed enhanced
delay-related firing
(p 5 .0020 vs. fixation)
during control. The
delay firing was main-
tained with ZD 1 SKF
(p . .05 vs. control)
but was then reduced
with SKF (p 5 .00017
vs. control; .0015 vs.
ZD 1 SKF). The delay
firing returned during
recovery (p 5 .00013
vs. SKF). The ZD con-
dition was not per-
formed in this neuron.
The dotted line indi-
cates onset of the
fixation period, the
dark gray background
indicates the cue per-
iod, and the light gray
background indicates
the delay period.

D1R/HCN Channel-Mediated PFC Impairment During Stress
Biological
Psychiatry
Finally, we verified that the changes in performance follow-
ing D1R stimulation or stress were due to working memory
impairments and not to general motor impairments, by analyz-
ing the rats’ response times for each trial during vehicle and
SKF81297 or FG7142 conditions (Supplementary Results in
Supplement 1).
866 Biological Psychiatry December 15, 2015; 78:860–870 www.sobp
D1R Stimulation in PFC Impaired Working Memory
Performance in a Monkey

Unilateral infusions of SKF81297 into monkey DLPFC impaired
working memory performance in the ODR task for spatial cues
contralateral to the infusion sites (p , .05 vs. the control
condition; Figures S4–S6 in Supplement 1). Infusions of
vehicle had no effect (p . .05 vs. the control condition;
Figure S6 in Supplement 1). In addition, infusions of
SKF81297 did not impair performance under visually guided
control conditions when working memory was not needed
(p . .05 vs. the control condition; Figures S6 and S7 in
Supplement 1). Further details are provided in the Supple-
mentary Results in Supplement 1.
DISCUSSION

The current study showed that the impairment in PFC function
during stress involves D1R opening of HCN channels to
weaken PFC network connections. Combining anatomical,
physiological, and behavioral evidence, we found that 1)
D1Rs and HCN channels colocalize and spatially interact at
dendritic spines in monkey layer III DLPFC; 2) stimulation of
D1Rs increases Ih in mouse PFC slices; 3) suppression of
neuronal firing by D1R-cAMP signaling can be prevented by
blocking HCN channels in monkey DLPFC; and 4) working
memory impairment induced by D1R stimulation or pharmaco-
logic stress can be prevented by blocking HCN channels in
rat PFC.

While cAMP is known to be involved in a multitude of
intracellular pathways [e.g., (44–46)], the current study dem-
onstrated that suppression of DLPFC function by D1Rs
involves cAMP-mediated increase in Ih, thus revealing an ionic
component to this important physiological response. It is of
interest that D1R stimulation suppressed firing throughout all
epochs of task-related firing, replicating earlier findings with
high doses of D1R stimulation (5). As the firing of delay cells is
thought to be driven by recurrent excitation from neurons with
shared network properties (2), D1R weakening of these net-
work inputs may alter all phases of task-related firing.
Figure 7. The effects of the D1

receptor agonist, SKF81297 (SKF),
on the hyperpolarization-activated
cyclic nucleotide-gated channel cur-
rent in layer V pyramidal neurons in
mouse prefrontal cortex slices. (A)
SKF increased the ratio of the max-
imum change in membrane potential
to the subsequent steady state poten-
tial during the hyperpolarizing pulse
(*p 5 .038 vs. control; n 5 7). Error
bars represent SEM. (B) A sample
trace showing that SKF induced a
sag in the membrane potential relative
to control conditions, which indicated
an increase in hyperpolarization-acti-
vated cyclic nucleotide-gated channel
current. (C) The trace in (B) scaled to
highlight the difference in the mem-
brane potential response between
SKF and control conditions.
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Figure 8. The effects of SKF81297 (SKF) and stress on spatial working
memory performance in rats. (A) SKF impaired spatial working memory
performance in rats (n 5 6) relative to vehicle (Veh) (*p 5 .010 vs. Veh 1

Veh), and this impairment was blocked by prefrontal cortex (PFC) infusions
of ZD7288 (ZD) (†p 5 .001 vs. SKF 1 Veh). Results represent % correct out
of 10 trials. Error bars represent SEM. (B) The pharmacologic stressor,
FG7142 (FG), impaired spatial working memory performance in rats (n 5 5)
relative to Veh (*p 5 .004 vs. Veh 1 Veh), and this impairment was blocked
by PFC infusions of ZD (†p 5 .006 vs. FG 1 Veh). Results represent %
correct out of 10 trials. Error bars represent SEM. (C) FG impaired spatial
working memory performance in rats (n 5 7) relative to Veh (*p 5 .002 vs.
Veh 1 Veh). However, this impairment was not blocked by ZD infusions
dorsal to PFC (†p 5 .008 vs. Veh 1 Veh). Results represent % correct out of
10 trials. Error bars represent SEM.
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Lower levels of D1R stimulation likely engage several
mechanisms that would also enhance spatially tuned persis-
tent firing (5), some of which would not involve HCN channels,
e.g., increasing NMDA receptor insertion into the postsynaptic
density (47,48) and enhancing gamma-aminobutyric acidergic
Biological Psych
lateral inhibition (49–51). However, HCN channel opening likely
contributes as well (Figures S3C and S8 in Supplement 1).

Rodent Versus Monkey PFC Homology

Although there are many differences between the rodent
medial PFC and the monkey DLPFC (29,31), almost two
decades of research suggest that some mechanisms do
extend across species. For example, DA depletion in these
regions impairs working memory in both rodents (52) and
monkeys (52–54), while excessive D1R stimulation in PFC
impairs cognitive function in rats and reduces neuronal firing in
monkeys via increased cAMP signaling (5). Our in vitro record-
ings in rodent PFC were made from layer V pyramidal neurons,
which have properties of both layer III and layer V pyramidal
neurons in primates (55), e.g., they respond to both D1R and
D2R agonists. These neurons are often used for intracellular
recordings and have been essential for direct examination of
ionic mechanisms. The current data indicate that D1R impair-
ment in PFC working memory function involves HCN channel
opening in both rodents and monkeys. However, the precise
contributions of these channels to neuronal physiology may
differ across species, particularly as HCN channels play a
variety of roles depending upon their ultrastructural local-
ization and molecular interactions.

Excitatory Versus Inhibitory Nature of D1R-HCN
Channel Signaling

D1Rs have been shown to enhance excitability of rodent PFC
pyramidal neurons in vitro, both via cAMP (21,56–58) and
independently of cAMP (59,60), through increase in sodium
and reduction in potassium currents (21,59,61,62) and possi-
bly NMDA receptors (63–65). These basic, excitatory influen-
ces may be saturated in a behaving animal, with additional
inhibitory effects being observed with higher levels of stim-
ulation (5), or the inhibitory effects in vivo may override these
excitatory mechanisms (3,66).

HCN channels also show both excitatory and inhibitory
influences on membrane potential, likely depending on the
laminar position of the neuron and whether the recording is
from a highly active neuron in vivo versus a hyperpolarized
neuron in a PFC slice. It should be noted that Ih does not
necessarily require hyperpolarization to open, as HCN chan-
nels have a tonically active leak current component (67–71)
that is blocked by ZD7288 (67,72). Furthermore, HCN chan-
nels and D1Rs are found near a constellation of cAMP signal-
ing proteins at dendritic spines, whereas HCN channels on
dendrites have few cAMP signaling proteins nearby (26). While
speculative, these findings suggest that HCN channels at
spines may open primarily in response to cAMP and reduce
firing by shunting network inputs and/or reducing temporal
summation [e.g., (73–75)]. Finally, HCN channels may also
interact with other potassium channels to alter dendritic
excitability, e.g., KCNQ (Kv7) channels (76) and Kir2.2/2.3
and potassium-selective leak (Kleak) channels (77).

While the current study and previous work (26) indicate that
HCN channels on spines can colocalize with D1Rs, a future,
dual quantitative analysis of HCN1 and D1Rs in the PFC
neuropil will be necessary to determine the extent of this
co-expression. Low doses of ZD7288 may be especially
iatry December 15, 2015; 78:860–870 www.sobp.org/journal 867
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potent in blocking HCN channels on spines due to D1R-
mediated phosphorylation of channels keeping them open
(78–81) and/or because channel blockade may be more
efficacious in a thin spine, given its very small volume
compared with that of a large dendrite.

Relevance to Psychiatric Disorders

These mechanisms are likely relevant to a range of psychiatric
disorders associated with dysregulated DA signaling, in which
patients often show precipitation or exacerbation of symptoms
with stress (3,12). For example, D1Rs are upregulated in
DLPFC of patients with schizophrenia (82–84), especially in
young, drug-naïve patients (11), and this increase correlates
with poor working memory (82,83). The current data suggest
that some of this impairment may arise from D1R-HCN
channel weakening of PFC network firing.
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